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In a previous paper we introduced the notion of an orthogonal category and 
generalized the notion of a sheaf of sets on a complete Boolean algebra B to that 
of a sheaf on the complete Boolean algebra B with values in an orthogonal 
category ~.  By properly replacing the complete Boolean algebra B by a manual 
~Y~ of Boolean locales, we get a notion of a sheaf on ~ with values in ,~, which 
can be regarded as a quantum generalization of a sheaf on B. Taking ~ to be 
the category of sheaves of Abelian groups or that of schemes g la Grothendieck, 
we will discuss some fundamental aspects of the quantum generalizations of 
sheaves and schemes. 

INTRODUCTION 

As we have shown (Nishimura, 1993), the garments of category theory 
liberalize the notion of a manual introduced by Foulis and Randall (1972; 
Randall and Foulis, 1973). The resulting mathematical structure is called a 
manual of Boolean locales, which is a small subcategory of the dual category 
~Eoc of the category ~ o [  of complete Boolean algebras and complete 
Boolean homomorphisms with mild constraints. We hold that the logical 
aspect of the operational foundations of empirical sciences, including quantum 
mechanics in particular, is suitably represented by a manual of Boolean 
locales. 

In a previous paper (Nishimura, 1995) we discussed the notion of a 
sheaf on a complete Boolean algebra B with values in an orthogonal category 
,~. Since Boolean mathematics has been concerned with sheaves on a complete 
Boolean algebra and we believe that the logic is to be represented not necessar- 
ily by a complete Boolean algebra but generally by a manual of Boolean 
locales, it is not unnatural that we should be led to the notion of a sheaf on 
a manual g)2 of Boolean locales with values in an orthogonal category ~,  
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which will be presented in Section 1. Since the category of sheaves of Abelian 
groups and that of schemes are naturally rendered orthogonal categories with 
coproduct diagrams as orthogonal sum diagrams, we can discuss a sheaf of 
sheaves of Abelian groups on ~ and a sheaf of schemes on s))2 in Sections 
3 and 4, respectively. Section 2 is devoted to preliminary considerations on 
sheaves of Abelian groups. 

In this paper a ring always means a cummutative ring with identity. A 
homomorphism of rings is always required to preserve identities. A prime 
ideal I of a ring R is always required to be I 4: R. 

1. O-SHEAVES 

Let us begin this section with a brief review of the notion of an orthogonal 
category introduced by Nishimura (1995). A pair (~, o ~ )  of a category 
and a class o~a, of diagrams in ~ is called an orthogonal category if it 
satisfies the following conditions: 

(1.1) 
(1.2) 
(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

The category ~ has an initial object. 
Every diagram in o~u is of the form {Xx ~ Y}X~A. 
For any small family {X}x~A of objects in ,~ there exist an 
object Y in ,~ and a family {fx}x~A of morphisms fx: X• ~ Y 

in ,~ such that the diagram {Xa ~ Y}~A lies in 0~a,. 
Given a small family {Xx}• of objects in t~, if diagrams 
{Xx ~ Y}X~A and {X• ~ Z}x~a lie in 08~, then there exists 
a unique morphism h: Y ~ Z in ~ such that gx = h o f• for 
each k E A. 

gx 
Given diagrams {Yx--*,Z}x~A and {X~ ~ Yx}~A x (keA)  in 

gh~ 
~, the diagram {X~ ~ ZIa~A and 8eAx} lies in 0~.~, iff all 
the diagrams {Y• ~ Z}X~A and {X~ ~ Yx}~ax (keA)  lie in 
oda,, where the sets A x are assumed to be mutually disjoint. 
If a diagram {X~ ~ Y Ik e A and 5 �9 Ah} lies in qS~, then there 
exist diagrams {X~ g~ "~ ZX}8~Ax (XeA) and {Zx ~ Y}X~A such 
that f~ = hx ~ g~ for any h �9 A and any ~ �9 Ax, where the sets 
Ax are assumed to be mutually disjoint. 
If {X~ ~ Y}X~A is a diagram in ~ and {Z~ ~ Y}~A is also a 
diagram in ,~ with Z~ being an initial object of ~ for each 

8 �9  then the diagram {Xx ~ Y}X~A is in 0~s~ iff the diagram 
fx 

{Xx ~ Y}XEA U {Z~ ~ Y}~A is in o~s~. 
If f: X ~ Y is an isomorphism in ~,  then the diagram 
{X ~ Y} lies in o~,. 
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Given a diagram {Xa ~ Y}xsA in 0g~, if fx~ and fh2 happen 
to be the same morphism for some distinct hi, h2 E A (so that 
Xx~ = X• then .Xx~ = Xx2 is an initial object of ,~. 

(1.10) If a diagram {X & Y} lies in od~,, then f is an isomorphism. 
( 1 . 1 1 )  �9 " f x  ' ~ . ~ . Gwen diagrams {Xx---' Y}X~A and {X8 ~ Y}~a  m ,~', if 

both the diagram {Xx~Y}• and the diagram 
{Xx ~ Y}X~AU {X~ ~ Y}~a  are in o ~ ,  then X~ is an initial 
object for each B E A. 

Unless confusion may arise, the category ,~ itself is called an orthogonal 
category by abuse of language. A diagram {Xx ~ Y}X~A in 0d.~ is called an 
orthogonal sum diagram, in which Y is called an orthogonal sum of Xx's 
and is denoted by Zx~A OXx. Thus the class od~ is the class of orthogonal 
sum diagrams in ~.  A morphism f: X ~ Y is called an embedding if there 
exists a morphism g: Z ~ Y in ~ such that the diagram X L Y r Z lies in 
o ~ .  Two embeddings f: Y ~ X and g: Z ~ X with the same codomain are 
said to be equivalent if there exists an isomorphism h: Y ~ Z in ~ such that 
f = g o h. An object in ~ is called trivial if it is an initial object of ~ .  A 
trivial object of ~ can be regarded as the orthogonal sum of the empty family 
of objects in ~.  

Example 1.1. The category 23oo~ of complete Boolean algebras and 
complete Boolean homomorphisms is a complete category, so that the dual 
category ~52oc of 2~oo[ is cocomplete. It is easy to see that the pair (23~oc, 
cp,~eo,.) is an orthogonal category, where ct~or denotes the class of coproduct 
diagrams in ~52oc. 

Example 1.2. It is well known that the category of ~o~p of topological 
spaces and continuous mappings is a complete and cocomplete category. It 
is easy to see that the pair (~op, cP~op) is an orthogonal category, where 
cP~o~ denotes the class of coproduct diagrams in ~op.  

Example 1.3. It is well known that the category ~rt~ of rings and 
homomorphisms is a complete category, so that the dual category 92~oc of 
9~rtg is a cocomplete category. It is easy to see that the pair (~Eoc, r  
is an orthogonal category. 

A functor ~ from an orthogonal cagegory ~ to another orthogonal 
category ~ is called an O-functor if it maps orthogonal diagrams in ,~ to 
orthogonal diagrams in E. 

Let s)2~ be a small subcategory of an orthogonal category ~.  A diagram 
in ~ is said to be in ~ if all the objects and morphisms occurring in the 
diagram lie in ~19~. Objects X and Y of ~ are said to be s))~-orthogonal, in 
notation X •  Y, if there exists an orthogonal sum diagram 
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X L Z & Y of ,~ lying in s)32. An object of ~ is said to be ~J?~-trivial if it is 
a trivial object of ,~ and also an initial object of sJ3L An object X of 93~ is 
said to be ~)2~-maximal if for any object Y of 9~, X _1_~ Y implies that Y is 
s)YUtrivial. Objects X and Y of ~ are said to be ~-equivalent, in notation 
X =,)s, u provided that for any objects Z of  ~3)2, X • Z iff Y •  Z. 
Obviously sJ)2-equivalence is an equivalence relation among the objects of 
s2~. We denote by [X],~ the equivalence class of an object X of ~ with 
respect to s)~-equivalence. An orthogonal sum diagram {X• ~ X}X~A of 
lying in ~ is said to. be an orthogonal s)~-sum diagram if for any orthogonal 

sum diagram {Xx f"~ X'}k~A of ~ lying in s))2 the unique morphism g: 
X ---' X '  of ,eft with g o f• = f'x for any h e A belongs to s2)2, in which X is 
called an orthogonal N - s u m  of Xx's and is denoted by XX~A O~r If A is 
a finite set, say A = { 1, 2}, then such a notation as X1 O,)~ X2 is preferred. 
Note that an ~- t r ivial  object of ~ ,  if it exists, can be regarded as an 
orthogonal sYJ~-sum of the empty family of objects of sJ)~. A morphism f: X 

Y is called an ~J)2-embedding if there exists a morphism g: Z ~ Y such 
that the diagram X L Y ,& Z is an orthogonal s))2-sum diagram. Given objects 
X and Y of s)32, if there exists an ~-embedding  f: X ~ X in ~ ,  then we say 
that X is an ~37Lsubobject ofu 

Given an orthogonal category ~ ,  a manual in ,~ or an R-manual for 
short is a small subcategory of ~ abiding by the following conditions: 

(1.1 2) For any pair (X, Y) of objects in ~9~, there exists at most a sole 
morphism from X to Y in 9~. 

(1.13) There exists at least a trivial object of ~ in ~))2. 
(1.14) Every trivial object of ~ in 3Y~ is ~2~-trivial. 
(1.15) For any objects X, Y in ~ ,  if there exists a morphism from X 

to Y in syj~, then Y •  Z implies X • Z for any object Z in ~J)2. 
(1.16) For any objects X, Y in s)j~ with X • u there exists an object 

Z of the form Z = X O,)~ Y in ~ .  
(1.17) For any object Z of the form Z = X @~ Y in s))2, X • W 

and Y •  W imply Z • W for any object W in ~32. 
(1.18) For any objects X and Y in sj)~, X ~-~ Y iff there exists an 

object Z in ~02 such that X l ~  Z, Y l,)~ Z, and both of X ~ e  
Z and Y O ~  Z are ~37Umaximal. 

(1.19) For any commutative diagram 

X f )Y 

Z 

of ,~, if f is in ~ and h is an ~))Lembedding, then g is in ~J~. 
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A St-manual ~0~ is said to be rich if it satisfies the following condition: 

(1.20) For any object X in ~ and any embedding f: Y ~ X in St, 
there exists an ~)~-embedding f ' :  Y '  ~ X in ~ such that f and 
f '  are equivalent in ,r 

The following proposition is proved in Nishimura (1995). 

Proposition 1.3. For any finite family { Xx } ~ ~ A of pairwise ~)~2-orthogonal 
objects in ~)2, EkEA ( ~  Xk exists. 

A manual ~ in an orthogonal category ~ is called or-coherent or com- 
pletely coherent if it satisfies condition (1.21),r or (1.21)~, respectively: 

(1.21),~ For any sequence {Xi}i~n of pairwise 9YUorthogonal objects in 
~)32, there exists an object Z in ~J)? such that Z = Ei~N O,~ X~. 

(1.21)= For any infinite family {Xx}x~a of pairwise ~JJUorthogonal 
objects in s)j~, there exists an object Z in 9Y~ with Z = 
EX~A @~ Xx. 

In the remainder of this paper a manual of Boolean locales always 
means a completely coherent rich manual in the orthogonal category (~Eor 
cc,z~.o~). A manual sys of Boolean locales is said to befinite if any object X 
in ~r~, regarded as a Boolean algebra, consists of a finite number of elements. 

Given a manual ~ of Boolean locales and an orthogonal category St, 
a functor ~: sJ32 ~ St is called an O-sheaf on ~ with values in ,~ if it maps 
orthogonal ~))2-sum diagrams to orthogonal diagrams in St. Given two O- 
sheaves of ~ and (g on sj~ with values in St, a morphism from ~ to (g is 
defined to be a natural transformation from the functor ~ to the functor (g. 
The totality of O-sheaves on s))~ with values in St and morphisms between 
them forms a category, denoted by O = S h ~ ( ~ )  or by O=Sh(s t )  if ~ is 
explicit from the context. 

Example 1.5. Given a complete Boolean algebra B and an orthogonal 
category St, the notion of a ~-sheaf on B discussed in Nishimura (1995), if 
B is identified with the first-class Boolean manual ~[l~ on B, is no other than 
our present notion of an O-sheaf on sYNB with values in St'. 

The following proposition should be obvious. 

Proposition 1.6. Given a manual ~0~ of Boolean locales and an O-functor 
~:  St ~ ~ between orthogonal categories, if ~ is an O-sheaf on ~ with 
values in St, then ~ o ~ is an O-sheaf on ~ with values in 2. Thus 
naturally induces a functor from O=Sh,)~(st) to �9 

Corollary 1.7. Given a finite manual ~ of Boolean locales and a functor 
~): St --* 52 between orthogonal categories mapping finite orthogonal sum 
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diagrams in St to finite orthogonal sum diagrams in E, if ~ is an O-sheaf 
on ~ with values in St, then g) o ~ is an O-sheaf on ~ with values in E. 
Thus �9 naturally induces a functor from �9 Sh~(St) to �9 

2. PRELIMINARY CONSIDERATIONS ON SHEAVES 

Given a topological space X, we denote by Shah(X) the category of 
sheaves of Abelian groups and homomorphisms between them. A continuous 
function f:  X ~ Y of topological spaces has two associated functorsf,: Shab(X) 
--~ Shab(Y ) and f*: Shah(Y) --* Shah(X). The functor f ,  assigns to each sheaf 

of Abelian groups on X of its direct image sheaf f , ~  on y while the 
functor f* assigns to each sheaf ~ of Abelian groups on Y of its inverse 
image sheaff*~ on X. As is well known, we have the canonical adjunction 

Homx ( f*~ ,  ~ )  ~-- Homr(~, f , ~ )  

for a sheaf ~ of Abelian groups on X and a sheaf ~ of Abelian groups on 
Y, for which the reader is referred, e.g., to Hartshorne (1977, Chapter II, 
Exercise 1.18). The unit and the counit of the adjunction are denoted by ~qf 
and  Ef, respectively. 

Proposition 2.1. The assignment to each topological space X of the 
category Shah(X) and to each continuous mapping f:  X --, Y of topological 
spaces of the standard adjunction 

f 
~ 

Sh,b(Y) ( ) Shab(S ) 
L 

is a contravariant functor from the category ~ol) to the category 9gbj, where 
9gbj denotes the category whose objects are categories and whose morphisms 
are adjunctions (MacLane, 1971, Chapter IV, w 

Corollary 2.2. Given a commutative square of continuous functions 

Xi >Yj 

x~ >r~ 
e. 2 

and sheaves of Abelian groups '~1 and ~2 on Xl and I12, respectively, we 
have the following commutative diagram: 
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Homx~(eL~g* ~2,~,) = Homr,(g*032,eq~0 

Homx,(f* a~ ~2,.~/1) Homr2(~2, g, az,~l) 

Ill II 

Homx~Ox~ ~2,f, ~ , )  =-- Homv~(:~z,a~,f*~,) 
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3. EMPIRICAL SHEAF THEORY 

We will define the category ~ ) , b  of sheaves of Abelian groups. The 
objects of ~[),b are all pairs (X, ~/) of a topological space X and a sheaf 
of Abelian groups on X. Given sheaves of Abelian groups (X, ~/) and 
(Y, 3~), the morphisms from (X, .~) to (Y, ~ )  in ~[)~b are all pairs (f, f#) of 
a continuous function f: X ~ Y and a homomorphismf~: ~ ~ f , ~  of sheaves 
of Abelian groups on Y By dint of adjunction Homx(f*~, ~/) ~ Homr(~,  
f, .~), the morphism (f,f#): (X, A) ~ (Y, 3~) in ~ , b  can be represented also 
by (f, f#), where f# is the homomorphism of sheaves of Abelian groups on 
X corresponding to f~ under the above adjunction. The corresponding (f, f#) 
and (f, f#) are respectively called the upper and lower representations of the 
same morphism of ~ , ~ .  We will use (f, f#) and (f, f#) interchangeably 
according to context. If the underlying continuous function f: X ~ Y is an 
identity function (so that X = Y), then the upper and lower representations 
coincide (i.e., f# = f#). Given morphisms (f, f#): (X, ~/) ~ (Y, ~ )  and (g, 
g#): (y 3~) ~ (Z, ~)  in ~I~ab, their composition (g, g#) o (f, f#) is defined 
to be (g of, (g , f f )  o g#). As for the lower representation of composition of 
morphisms in G[),~, we have the following result. 

Proposition 3.1. If (f,f~) and (g, g#) are represented lowerly by (f, f#) 
and (g, g#), respectively, then their composition (g, g#) o (f,f#) is representable 
lowerly as (g of, f# o (f,g#)). 

Proof By chasing f# around the commutative square 

Homx(f*g* ~, ~ )  ---- Horny(g* ~ , f ,  ~ )  

T T Homx(f*g#, s~) Homv(g#,~N) 

Homx(f*~, sg) : Homy(~,f,  sg) 
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we have 

f#o 0 e* g#) I ) f#og# 

2 
f~ l ) f #  

By chasing g# around the commutative square 

Homr(g* ~,f#)  

Homr(g* (g, ~ )  

T 
Homr(g* ~ , f .  s~) 

-= Homz(%, g, ~ )  

/I Homz(~, g,f#) 

Homz((], g.f,  s~) 

we have 

g#1 ) g# 

Z 2 
f#og#1 ) (g.ff)og# 

Thus f# o (f.g#) corresponds to (g , f f )  o g# under the canonical adjunction 
Homx(f*g*~, .~) -~ Homz(~, g , f . ~ ) .  �9 

Given a topological space X, we denote by ~ba~(X) the subcategory of 
~ a b  consisting of all objects of ~b.b  of the form (X, ~/) and all morphisms 
of ~ a b  of the form (f, f f )  withfbeing the identity mapping of X onto itself. 
Note that the category ~).~(X) is naturally isomorphic to the dual category 
of Shah(X). Thus, given a continuous function f: X ~ Y of topological spaces, 
the direct image functorf.:  Shah(X) ~ Sh~b(Y) and the inverse image functor 
f*:  Shah(Y) -~ Shah(X) can be regarded also as functorsf.: ~Da~(X) --* ~[?ab(Y) 
and f*: ~[l,b(Y) --* ~I?a~(X), respectively. 

The disjoint union construction of sheaves of Abelian groups, which is 
a special case of the so-called gluing construction of sheaves (Hartshorne, 
1977, Exercises 1.22 and 2.12 of Chapter II), gives rise to the coproduct 
construction in the category ~[9~, so that ~)~b is a category with coproducts. 
It is easy to see the following result. 

Proposition 3.2. The pair (~D~b, c p ~ )  is an orthogonal category, 
where c p ~  is the class of coproduct diagrams in the category ~[?a~. 

In the remainder of this section an arbitrarily chosen manual ~J)2 of 
Boolean locales shall be fixed. Since the forgetful functor GSI?,~ ~ ~t~I) is 
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an O-functor, it induces a forgetful functor ~ :  O=Sl~(~f)ao) ~ O = S h ( ~ o p )  
by Proposition 1.6. An object 9~ in O=Sh( |  with ~p(~) = ~ is called an 
O-sheaf of sheaves of Abelian groups on ~. Given an object Y in O =Sla(~op), 
the subcategory of O = Sh(@ ~a~) consisting of all the objects Pl in O = 8 h ( ~  f),~) 
with ~p(~) = Y and all the morphisms { in O=81a(~fga~) with dp(~) = 1~ is 
denoted by O=Sh(~)n~ ;  Y). Its dual category is denoted by Sh~b(~). 

Lemma 3.3. Given a commutative diagram 

O! I 

X, > Yl 

x~ >le2 
OL 2 

in the category ~Op and a morphism (f, f#): (Xl, a/i) -+ (X2, za2) of the 
category ~f)ab, there exists a unique morphism (g, g#): (Y1, eq,a~l) --+ (II2, 
e~2,a/2) of ~ f ) ~  making the diagram of ~f)ab 

(~1 ,  IX # ) 

(X~,a/l) ) (Y,,oq. a/z) 

(f'f#) l ~ (g'g#) 
(X> a/2) ) ( Y2, or2, a/O 

(a=,a~) 

commutative, where ot~#: Oli , ,~  i ~ OLi ,~  i is an identity homomorphism of 
sheaves of Abelian groups on Y~ (i = 1, 2). Explicitly it should be the case 
that g# = c~2,f #. 

Proof. It is easy to see that 

(0t2, Or#) ~ (f ,f#) = (a2 of, e~a,f #) (3.1) 

It is also easy to see that for any morphism (g, g#): (Yl, oq,a/1) + (Y2, Ore,a/2) 
of | 

(g, g#) o (o~1 ' Oil #) = (go  al,  g#) (3.2) 

Thus (g, g#) makes the latter diagram commutative iff g# = c~2,f #. B 

We write qb#(f#; f, g, oq, a2) for g# in the above lemma. The following 
lemma should be obvious. 
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Lemma 3.4. Let 

be an orthogonal sum diagram in ~9,~, and {Ix ~ Y}X~A an orthogonal 
diagram in ~o~o. Let a: X ~ Y and ax: X• -* Y• (h e A) be morphisms in 
~ot0 with a o fx = gx o otx for any h ~ A. Then 

# # O~ O~ (gx,~ b (fx;fx,gx, x, )) 
{ (rx, o~x,~lx) )(~,",~)k~A 

is an orthogonal diagram in ~ b .  

By Lemmas 3.3 and 3.4 it is easy to see the following result. 

Proposition 3.5. Given a morphism ~: Y -+ �9 of O-sheaves of topological 
spaces and an O-sheaf 71 of sheaves of Abelian groups on Y, there exists a 
unique O-sheaf ~ of sheaves of Abelian groups on �9 such that ~ (X)  = 
~(X),92(X) for each Boolean locale X in ~ ,  and the assignment to each 
Boolean locale X in ~0~ of the pair (~(X), ~#(X)) with ~#(X): ~(X),92(X) 
f(X),92(X) being an identity homomorphism of sheaves of Abelian groups 
on the topological space Y(X) is a morphism of O-sheaves of sheaves of 
Abelian groups from 71 to ~ .  

The O-sheaf 2~ of sheaves of Abelian groups, whose unique existence 
is guaranteed by the above proposition, is denoted by f,92 and is called the 
direct image of 92 under ~. It remains to make ~, a functor from the category 
O = 8 h ( ~ a D  to the category O = 8 h ( ~ h D .  

Lemma 3.6. Consider t h e  followin__g cubic dia__gram of sheaves of Abelian 
groups, where ~ = a , ~ ,  ~ = [3,~,  c~ = .y,~, ~0 = 8,~0, and all homomor- 
phisms of  sheaves of Abelian groups or#: a , ~ / ~  o t ,~ ,  [3#: [3 ,~ ~ [3,~, ",/#: 
",/,q~ -~ ",/,q~, and 8#: 8,~b ~ 8 , ~  are identity homomorphisms: 

- -  ) 
(X,~ if'f*) {Y,~) 

('r #) / (8,8#) 

(X,~) / q'f#) )(Y,~) / 
(g'g#) ~ / (h'h#) J~ / 

( Z , ~  (k,k#) >(W,~) 
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Suppose that all the faces of the above cubic diagram except the back face 
are commutative. Suppose also that the following underlying cubic diagram 
of topological spaces is commutative: 

Y , p  

x _ _  f > 

Z - -  k > W  

Then the back face of the upper diagram is also commutative. 

P r o o f  We have 

(h, h ~) o ( f ,F)  = (h of, (h,13,F) o (8,h~)) (Lemma 3.3) 

= (h o f ,  ( ~ , h , f  #) o (~,h~))  (-h o [3 = ~ o h) 

= (h o f ,  ~ , ( ( h , f )  o he3) 

[(h, h~)o ( f , f~  = (k, k~ o (g, g~] 

= (~o -~, ( 8 , k , g  ~) o (~ , Id) )  

= (ko L (~ ,~ ,J)  o ( ~ , ~ )  (~o ~/= ~ o k) 

= (k, ~ o (~, ~ )  (Lemma 3.3) [] 

The above temma gives the following forthwith. 

Propos i t ion  3.7. Given a morphism ~: 3~ --* �9 in O=Sh(~o~0) and a 
morphism u: ~l ~ ~ in O = S h ( ~ a ~ ;  3C), there exists a unique morphism 
t~: f , ~  ~ ~ ,~  in O=Sh(~) ,D;  �9 with t~(X) = ~,u(X) for each Boolean 
locale X in ~ .  
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Thus the morphism f: E --' �9 induces a functor f .  from the category 
O = S h ( ~ , ~ ;  3~) to the category O = S h ( ~ b ;  �9 The functor f .  can be 
regarded as a functor from the category Sh,b(3s to the category Shah(�9 

The discussion from Lemma 3.3 through Proposition 3.7 can be dualized. 
By way of example, Lemma 3.3 can be dualized as follows. 

Lemma 3.8. Given a commutative diagram 
O~ I 

XI ) Yt 

e( 2 

in the category ~ o p  and a morphism (g, g#): (YI, ~aL) -+ (1:2, ~ 2 )  of the 
category ~t}.b, there exists a unique morphism (f, f#): (XI, oLd.i) --+ 
(X2, etch2) of ~Igab making the diagram of ~l~a~ 

(X,,a~ ~ )  (a~,al#) * ) (Yl,~l) 

(ff#) + + (g'g#) 

commutative. Explicitly it should be the case that f# = c~T g#. 

Proof Since oq# is the identity homomorphism c ~ 1  --+ c~f~l of sheaves 
of Abelian groups on X1 by assumption, we have that 

(g, go) o (oq, ~1#) = (g ~ oq, ot~'g#) (3.3) 

Similarly, since or2# is the identity homomorphism ot~a2 --+ o t ~ 2  of sheaves 
of Abelian groups on X2 by assumption, we have for any morphism (f, f#): 
(X1, e t ~ t )  --+ (3(2, o t ~ 2 )  of ~ . ~  that 

(or2, a2#) o (f, f#) = (or2 o f, f#) (3.4) 

Thus (f, f#) makes the latter diagram commutative ifff# = a~'g#. �9 

We write q%(g#;f, g, oq, a2) for f# in the above lemma. This dualization 
of Lemma 3.3 together with the dualization of Lemma 3.4 naturally leads to 
the following dualization of Proposition 3.5. 

Proposition 3.9. Given a morphism f: ~ --+ �9 in O = S h ( ~ o p )  and an 
O-sheaf 23 of sheaves of Abelian groups on �9 there exists a unique O-sheaf 
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23 of sheaves of Abelian groups on Y such that 92(X) = ~(X)*23(X) for each 
Boolean locale X in s)3~, and the assignment to each Boolean locale X in 
of the pair (f(X), ~#(X)) with f#(X): ~(X)*23(X) ~ ~(X)*23(X) being an identity 
homomorphism of sheaves of Abelian groups on the topological space Y(X) 
is a morphism of O-sheaves of sheaves of Abelian groups from 9~ to 23. 

Similarly, Lemma 3.6 can readily be dualized, which leads at once to 
the following dualization of Proposition 3.7. 

Proposition 3.10. Given a morphism ~: 3E ~ �9 in O=Sh(~op)  and a 
morphism D: ~ ~ 23 in O=Sh(~b~b; �9 there exists a unique morphism 
ix: f*?~[ --* ~'23 in O = $ h ( ~ b ~ ;  3C) with u(X) = f*l:(X) for each Boolean 
locale X in ~J)~. 

Thus the morphism ~: 3~ -o �9 induces a functor f* from the category 
O = S h ( ~ a ~ ;  �9 to the category O=Sh(~ ) ,~ ;  3~). The functor f ,  can be 
regarded as a functor from the category Sh,b(�9 to the category Sh,b(3~). 

Lemma 3.11. Given a commutative square of continuous functions 
(3/. I 

Xl ) YI 

,1 l 
Xz )Y2 

Ot 2 

and a morphism (f, f#): (X1, Ms) --* (X2, -~2) in ~ba~, the square 

(X~,oL;et,,M,) < (lx, 'e~'(M')) (X,,o~,) 

in G~),~ is commutative, where g# = qb#(f% f, g, O~l, O~2) and h# = ~#(g#; f, 
g ,  0"1, Or-2). 

Proof By chasing lc~2,M2 around the commutative square 

Homrz((x2,M2,%,Mz) 

H~ f~) ~ 

Homr2(ot2,M2,~2,f, ~l)  

= Homx2((x~' %,M2,M~) 

~ Homx2((x~ a2,M2,f # ) 

_=. Homxz((x~ ~2,M2,f,M,) 



3 1 8  

w e  have 

N i s h i m u r a  

1 ~,2,~ ~ I >e~(M2) 

% . f ~ l  >P~ 

Since oL2,ff = g# by Lemma 3.3, ff o Eet2(,.q~2) corresponds to g# under the 
canonical adjunction 

Homx2(Cx~eLz..~/2,f..~l) = Homr2(et2.o~2, e~a.f.sll) 

By chasing l~t.a~ around the commutative square 

Homv,(g* %.M2,cxl,M0 

Homv,(g#,oq.M0 T 
Homv,(Oq.Mj,Otl.M0 

we have 

= Homx,(Cx~ g*cxz.M2,Ml) 

"I Homx,(e~ g#,M,) 

H * --- omx,(eq eq.s~L,..~O 

O * g# I > e,,,(~,) (or, g#) 

1.,..,,, I > %,(M0 

Since c~g# = ha by Lemma 3.8, g# corresponds to %~(x/0 o h# under the 
canonical adjunction 

Homrl(g*a2,s~2, ~xl,s~l) ~ Homxj(a'(g*oLz,s~2, S~a) 

By Corollary 2.2 the following diagram is commutative: 

H , Homx,(Ot~g*%.M2,M0 = omv,(g % , ~ o q M  0 

II IIZ 

Homx,(f* et ~et2.Mv,.~q) Homr2(oLz.Mz,g.eq.sa 0 

II 

Homx2(~2,sg2,f, Ml) _= Homy2(~z,~,oL~,f,s~l) 

By chasing f# o Etx2(~2) around this commutative diagram, we have 
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e~(~)oh#  ( t g# 

f#oe,~(N~) I ) g# 

Thus f" o E~2(S~2) corresponds to e,~(,~) o h# under the canonical adjunction 
Homx2(ot~az,~2,f, .~ ~) ~- Homx~(f*et~o~2,~2, M1). Since the upper represen- 
tation of (lxv e,~2(,~/2)) ~ (f,f#) is (f,f# o e,~2(,~2) ) and the lower representation 
of (f, h#) o (lxv e,~(~/~)) = ~ e ~ ( ~ )  o h#), the proof is complete. �9 

By the above lemma it is easy to see the following result. 

Proposition 3.12. Let ~: Y ~ �9 be a morphism in �9 Let 9~ 
be an object in ~bab(3~). Then the assignment to each object X in s2~ of 
(1.~(x), e~(x)(~(X))) is a morphism ~f(9~): 9~ ~ ~*f,?~ in ~a~(Y) ,  so that the 
assignment to each object ~ in ~ba~(Y) of ~r(9~) is a natural transformation 

~: I~,~(.~) -~ f ' f ,  

The dualization of ~f is denoted by el, which is a natural transformation 
from ~*~, to l~,b(.~ ). 

Lemma 3.11 can be dualized, which leads to the following dualization 
of Proposition 3.12. 

Proposition 3.13. Let ~: Y ~ �9 be a morphism in O=Sh(~op) .  Let 
be an object in ~bab(�9 Then the assignment to each object X in ~2~ of 
(l~(x), ef(x)(gA(x))) is a morphism ~f(~): f ,~*~ ~ ~ in ~l~b(�9 so that the 
assignment to each object 2~ in ~)ab(�9 of ~f(~) is a natural transformation 

~ :  f ' f ,  -~ I~( ,o~  

The dualization of ~f is denoted by rtf, which is a natural transformation 
of I~,~(o~ to f ' f , .  

Now we are ready to present the main result of this section. 

Theorem 3.14. Let ~: 3~ ~ �9 be a morphism in O=Sh(~olg). Then (f*, 
f . ,  rtb el) is an adjunction from Sh,b(�9 to Sh,~(Y). 

Proof It suffices to note that the triangular identities of the canonical 
adjunctions corresponding to f(X) for all objects X in ~ yield the desired 
triangular identities (MacLane, 1971, p. 83). �9 
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4. EMPIRICAL S C H E M E  THEORY 

Throughout this section we assume that ~Y)2 is afinite manual of Boolean 
locales. The principal concern of this section is to generalize the adjunction 
between the category ~r of schemes and the category ~Qoc of ring locales 
(Hartshorne, 1977, Chapter II, Exercise 2.4) to that between � 9  
and O=Sh(~Qor where the category ~c~) can be regarded as an orthogonal 
category by taking the coproduct diagrams in ~r as orthogonal sum diagrams 
as in ~Dab. 

The following proposition is well known, for which the reader is referred, 
e.g., to Hungerford (1974, Chapter 3, Section 2, Exercise 22). 

Proposition 4.1. I f R  is a ring of the form R1 X . . .  X Rn for some rings 
Rt . . . . .  Rn, then any ideal I of R is of the form I~ X --- X In, where Ii is 
an ideal of Ri (1 <-- i <- n).  

Corollary 4.2. If R is a ring of the form Rl X -.- X Rn for some rings 
Rt . . . . .  Rn, then any prime ideal I of R is of the form 11 X . . .  X In, where 
Ii = Ri for all i (1 -< i - n) except exactly one i0, and Ii0 is a prime ideal 
of Rio. 

Assigning to each ring of its spectrum gives a functor ~I0r 9i52or 
~r for which we have the following result. 

Proposition 4.3. The functor ~pec:  9t~oc ~ ~c~3 preserves finite orthog- 
onal diagrams. 

Proof If a ring R is of the form RI X . . .  X Rn for some rings Rt . . . . .  
Rn, then the underlying topological space of ~pec(R) is easily seen, by the 
above proposition and its corollary, to be the topological sum of the underlying 
topological spaces of ~9ec(R1) . . . . .  ~loeC(Rn). Furthermore, it is also easy 
to see that if I is a prime ideal of R of the form It X . . .  X In with Ii = Ri 
for all i (1 --< i --< n) except exactly one i0 and Iio being a prime ideal of 
Rio, then the localization RI of R with respect to the prime ideal I is naturally 
isomorphic to the localization (R/0)~i ~ of Rio with respect to the prime ideal 

Iio. Thus the desired result should be evident. �9 

Since we have assumed that the manual s))2 of Boolean locales is finite, 
the functor ~pec:  ,r --, ~cI) naturally induces a functor Spec: O = S h  
(9~EOr ~ O = S h ( ~ )  by the above proposition and Corollary 1.7. 

Taking global sections of the structure sheaves of schemes gives the 
globalization functor F: ~c~  ~ 9t~oc, for which the following proposition 
should be obvious. 

Proposition 4.4. The functor F: ~cI) ~ 91520r is an O-functor. 
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By the above proposition and Proposition 1.6 the functor F: ~c~  
~Eor  naturally induces a functor Fo: O = g h ( ~ c ~ )  ~ O=Sh(~;Eoc). 

By the same token as in the preceding section, the canonical adjunction 

Hom~,.~l(E ~pec  A) ---- Hom!~o,.(F(V), A) (4.1) 

for a scheme V and a ring A induces the following adjunction. 

Theorem 4.5. There is a canonical adjunction 

Homo=sh(~c~)(~, Spec(~)) ~ Homo=s~(gt~o~)(Fo(23), ~R) 

for an O-sheaf ~ of schemes and an O-sheaf ~ of ring locales. 
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